Validator Categories¶
Truthound organizes validators into 21 semantic categories plus 7 infrastructure modules. Each category addresses a specific aspect of data quality.
Category Overview¶
Validator Categories (21 categories, 264 validators)¶
| Category | Validators | Module Path | Description |
|---|---|---|---|
| schema | 14 | truthound.validators.schema |
Table structure, column types |
| completeness | 12 | truthound.validators.completeness |
Null, NaN, empty values |
| uniqueness | 17 | truthound.validators.uniqueness |
Duplicates, primary keys |
| distribution | 15 | truthound.validators.distribution |
Range, set, statistical |
| string | 20 | truthound.validators.string |
Pattern, format validation |
| datetime | 10 | truthound.validators.datetime |
Date/time validation |
| aggregate | 8 | truthound.validators.aggregate |
Statistical aggregates |
| cross_table | 4 | truthound.validators.cross_table |
Multi-table checks |
| query | 18 | truthound.validators.query |
Expression-based |
| multi_column | 18 | truthound.validators.multi_column |
Column relationships |
| table | 17 | truthound.validators.table |
Table metadata |
| geospatial | 12 | truthound.validators.geospatial |
Geographic coordinates |
| drift | 14 | truthound.validators.drift |
Distribution drift |
| anomaly | 17 | truthound.validators.anomaly |
Outlier detection |
| referential | 16 | truthound.validators.referential |
Foreign keys, orphans |
| timeseries | 18 | truthound.validators.timeseries |
Time series validation |
| business_rule | 8 | truthound.validators.business_rule |
Checksums, IBAN, VAT |
| profiling | 8 | truthound.validators.profiling |
Cardinality, entropy |
| localization | 9 | truthound.validators.localization |
Regional identifiers |
| ml_feature | 9 | truthound.validators.ml_feature |
Feature validation |
| privacy | 20+ | truthound.validators.privacy |
GDPR, CCPA compliance |
Infrastructure Modules (7 modules)¶
| Module | Location | Description |
|---|---|---|
| sdk | truthound.validators.sdk |
Custom validator development |
| security | truthound.validators.security |
SQL injection, ReDoS protection |
| i18n | truthound.validators.i18n |
Internationalization (15 languages) |
| timeout | truthound.validators.timeout |
Distributed timeout management |
| streaming | truthound.validators.streaming |
Real-time validation |
| memory | truthound.validators.memory |
Memory-efficient processing |
| optimization | truthound.validators.optimization |
DAG execution, profiling |
Schema¶
Validates table structure, column definitions, and data types.
Submodules:
- column_exists - Column presence validation
- column_count - Row/column count validation
- column_type - Data type validation
- column_order - Column ordering
- table_schema - Complete schema matching
- column_pair - Column pair relationships
- multi_column - Composite key validation
- referential - Referential integrity
- multi_column_aggregate - Multi-column calculations
- column_pair_set - Column pair set membership
Validators:
| Validator | Description |
|---|---|
ColumnExistsValidator |
Ensures required columns exist |
ColumnNotExistsValidator |
Ensures forbidden columns are absent |
ColumnCountValidator |
Validates column count (exact/range) |
RowCountValidator |
Validates row count (exact/range) |
ColumnTypeValidator |
Validates column data types |
ColumnOrderValidator |
Validates column ordering |
TableSchemaValidator |
Validates complete schema |
ColumnPairValidator |
Validates column pair relationships |
MultiColumnUniqueValidator |
Validates composite key uniqueness |
ReferentialIntegrityValidator |
Validates foreign key references |
MultiColumnSumValidator |
Validates column sum equals target |
MultiColumnCalculationValidator |
Validates arithmetic relationships |
ColumnPairInSetValidator |
Validates column pairs in allowed set |
ColumnPairNotInSetValidator |
Validates column pairs not in forbidden set |
Completeness¶
Detects missing values: null, NaN, empty strings, whitespace.
Submodules:
- null - Null value detection
- empty - Empty string detection
- conditional - Conditional null validation
- default - Default value detection
- nan - NaN and infinity detection
Validators:
| Validator | Description |
|---|---|
NullValidator |
Detects null values |
NotNullValidator |
Ensures no null values |
CompletenessRatioValidator |
Validates minimum completeness ratio |
EmptyStringValidator |
Detects empty strings |
WhitespaceOnlyValidator |
Detects whitespace-only values |
ConditionalNullValidator |
Validates nulls based on conditions |
DefaultValueValidator |
Detects placeholder/default values |
NaNValidator |
Detects NaN values |
NotNaNValidator |
Ensures no NaN values |
NaNRatioValidator |
Validates maximum NaN ratio |
InfinityValidator |
Detects infinite values |
FiniteValidator |
Ensures all values are finite |
Uniqueness¶
Validates value distinctness, duplicates, and key constraints.
Submodules:
- unique - Basic uniqueness checks
- duplicate - Duplicate detection
- primary_key - Primary/compound key validation
- distinct_values - Distinct value constraints
- within_record - Record-level uniqueness
- approximate - HyperLogLog approximate counts
Validators:
| Validator | Description |
|---|---|
UniqueValidator |
Ensures column values are unique |
UniqueRatioValidator |
Validates unique value ratio |
DistinctCountValidator |
Validates distinct count range |
DuplicateValidator |
Detects duplicate values |
DuplicateWithinGroupValidator |
Detects duplicates within groups |
PrimaryKeyValidator |
Validates primary key (unique + non-null) |
CompoundKeyValidator |
Validates composite primary key |
DistinctValuesInSetValidator |
All distinct values must be in set |
DistinctValuesEqualSetValidator |
Distinct values must equal set exactly |
DistinctValuesContainSetValidator |
Distinct values must contain set |
DistinctCountBetweenValidator |
Distinct count within range |
UniqueWithinRecordValidator |
Values unique within each row |
AllColumnsUniqueWithinRecordValidator |
All values unique per row |
ColumnPairUniqueValidator |
Column pair uniqueness |
HyperLogLog |
Approximate distinct count utility |
ApproximateDistinctCountValidator |
HyperLogLog-based distinct count |
ApproximateUniqueRatioValidator |
Approximate unique ratio |
Distribution¶
Validates value ranges, sets, and statistical distributions.
Submodules:
- range - Numeric range validation
- set - Set membership validation
- monotonic - Monotonicity checks
- outlier - IQR/Z-score outlier detection
- quantile - Quantile validation
- distribution - Distribution shape validation
- statistical - KL divergence, chi-square
Validators:
| Validator | Description |
|---|---|
BetweenValidator |
Values within inclusive range |
RangeValidator |
Range with configurable inclusivity |
PositiveValidator |
All values > 0 |
NonNegativeValidator |
All values >= 0 |
InSetValidator |
Values must be in allowed set |
NotInSetValidator |
Values must not be in forbidden set |
IncreasingValidator |
Values monotonically increasing |
DecreasingValidator |
Values monotonically decreasing |
OutlierValidator |
IQR-based outlier detection |
ZScoreOutlierValidator |
Z-score outlier detection |
QuantileValidator |
Quantile bounds validation |
DistributionValidator |
Distribution shape validation |
KLDivergenceValidator |
KL divergence threshold |
ChiSquareValidator |
Chi-square goodness of fit |
MostCommonValueValidator |
Most common value validation |
String¶
Validates string patterns, formats, and content.
Submodules:
- regex - Basic regex matching
- regex_extended - Multiple patterns, negation
- length - String length constraints
- format - Common format validators
- json - JSON parsing validation
- json_schema - JSON Schema validation
- charset - Character set validation
- casing - Case consistency
- like_pattern - SQL LIKE patterns
Validators:
| Validator | Description |
|---|---|
RegexValidator |
Regex pattern matching |
RegexListValidator |
Multiple patterns (any match) |
NotMatchRegexValidator |
Must not match pattern |
NotMatchRegexListValidator |
Must not match any pattern |
LengthValidator |
String length constraints |
VectorizedFormatValidator |
Base vectorized format validator |
EmailValidator |
RFC 5322 email format |
UrlValidator |
URL format validation |
PhoneValidator |
Phone number format |
UuidValidator |
UUID format (v1-v5) |
IpAddressValidator |
IPv4 address format |
Ipv6AddressValidator |
IPv6 address format |
FormatValidator |
Auto-detect format by column name |
JsonParseableValidator |
Valid JSON strings |
JsonSchemaValidator |
JSON Schema validation |
AlphanumericValidator |
Alphanumeric characters only |
ConsistentCasingValidator |
Consistent case style |
LikePatternValidator |
SQL LIKE pattern match |
NotLikePatternValidator |
SQL LIKE pattern exclusion |
Datetime¶
Validates temporal data formats, ranges, and ordering.
Submodules:
- format - Date/time format validation
- range - Date range validation
- order - Temporal ordering
- timezone - Timezone validation
- freshness - Data recency
- parseable - Date parsing validation
Validators:
| Validator | Description |
|---|---|
DateFormatValidator |
Date format validation |
DateBetweenValidator |
Date within range |
FutureDateValidator |
Date must be in future |
PastDateValidator |
Date must be in past |
DateOrderValidator |
Start date < end date |
TimezoneValidator |
Timezone-aware validation |
RecentDataValidator |
Data within max age |
DatePartCoverageValidator |
Coverage across date parts |
GroupedRecentDataValidator |
Recency within groups |
DateutilParseableValidator |
Parseable by dateutil |
Aggregate¶
Validates column-level statistical aggregates.
Submodules:
- central - Mean, median validation
- spread - Std, variance validation
- extremes - Min, max validation
- sum - Sum validation
- type - Type validation at aggregate level
Validators:
| Validator | Description |
|---|---|
MeanBetweenValidator |
Column mean within range |
MedianBetweenValidator |
Column median within range |
StdBetweenValidator |
Standard deviation within range |
VarianceBetweenValidator |
Variance within range |
MinBetweenValidator |
Column minimum within range |
MaxBetweenValidator |
Column maximum within range |
SumBetweenValidator |
Column sum within range |
TypeValidator |
Aggregate-level type validation |
Cross_table¶
Validates relationships between multiple tables.
Submodules:
- row_count - Row count comparisons
- aggregate - Aggregate comparisons
Validators:
| Validator | Description |
|---|---|
CrossTableRowCountValidator |
Compare row counts |
CrossTableRowCountFactorValidator |
Row count ratio validation |
CrossTableAggregateValidator |
Compare aggregates |
CrossTableDistinctCountValidator |
Compare distinct counts |
Query¶
Expression-based validation using Polars expressions.
Submodules:
- base - Base query validators
- result - Query result validation
- row_count - Query row count validation
- column - Query column validation
- aggregate - Query aggregate validation
- expression - Custom expression validation
Validators:
| Validator | Description |
|---|---|
QueryValidator |
Base query validator |
ExpressionValidator |
Polars expression validation |
QueryReturnsSingleValueValidator |
Query returns one value |
QueryReturnsNoRowsValidator |
Query returns no rows |
QueryReturnsRowsValidator |
Query returns at least one row |
QueryResultMatchesValidator |
Query result matches expected |
QueryRowCountValidator |
Query result row count |
QueryRowCountRatioValidator |
Ratio of matching rows |
QueryRowCountCompareValidator |
Compare row counts |
QueryColumnValuesValidator |
Validate column values |
QueryColumnUniqueValidator |
Query column uniqueness |
QueryColumnNotNullValidator |
Query column non-null |
QueryAggregateValidator |
Query aggregate validation |
QueryGroupAggregateValidator |
Group aggregate validation |
QueryAggregateCompareValidator |
Compare aggregates |
CustomExpressionValidator |
Custom expression strings |
ConditionalExpressionValidator |
Conditional expressions |
MultiConditionValidator |
Multiple conditions |
RowLevelValidator |
Row-level validation |
Multi_column¶
Validates relationships across multiple columns.
Submodules:
- base - Base multi-column validators
- arithmetic - Arithmetic relationships
- comparison - Column comparisons
- consistency - Consistency patterns
- statistical - Statistical relationships
Validators:
| Validator | Description |
|---|---|
MultiColumnValidator |
Base multi-column validator |
ColumnArithmeticValidator |
Arithmetic relationships |
ColumnSumValidator |
Columns sum to target |
ColumnProductValidator |
Columns multiply to target |
ColumnDifferenceValidator |
Column difference validation |
ColumnRatioValidator |
Column ratio validation |
ColumnPercentageValidator |
Percentage validation |
ColumnComparisonValidator |
Column comparison (>, <, ==) |
ColumnChainComparisonValidator |
Ordered column chain |
ColumnMaxValidator |
Max across columns |
ColumnMinValidator |
Min across columns |
ColumnMeanValidator |
Mean across columns |
ColumnConsistencyValidator |
Consistency patterns |
ColumnMutualExclusivityValidator |
At most one non-null |
ColumnCoexistenceValidator |
All null or all non-null |
ColumnDependencyValidator |
Functional dependencies |
ColumnImplicationValidator |
If A then B |
ColumnCorrelationValidator |
Correlation validation |
ColumnCovarianceValidator |
Covariance validation |
MultiColumnVarianceValidator |
Variance across columns |
Table¶
Validates table-level metadata and properties.
Submodules:
- base - Base table validator
- row_count - Row count validation
- column_count - Column count validation
- freshness - Data freshness
- schema - Schema matching
- size - Size validation
Validators:
| Validator | Description |
|---|---|
TableValidator |
Base table validator |
TableRowCountRangeValidator |
Row count within range |
TableRowCountExactValidator |
Exact row count |
TableRowCountCompareValidator |
Compare with reference |
TableNotEmptyValidator |
Table not empty |
TableColumnCountValidator |
Column count validation |
TableRequiredColumnsValidator |
Required columns present |
TableForbiddenColumnsValidator |
Forbidden columns absent |
TableFreshnessValidator |
Data freshness validation |
TableDataRecencyValidator |
Recent data presence |
TableUpdateFrequencyValidator |
Update frequency check |
TableSchemaMatchValidator |
Schema matches spec |
TableSchemaCompareValidator |
Compare with reference |
TableColumnTypesValidator |
Column types match |
TableMemorySizeValidator |
Memory size bounds |
TableRowToColumnRatioValidator |
Row/column ratio |
TableDimensionsValidator |
Table dimensions validation |
Geospatial¶
Validates geographic coordinates and spatial data.
Submodules:
- base - Base geo validator with Haversine
- coordinate - Coordinate validation
- distance - Distance calculations
- boundary - Bounding box, country
Validators:
| Validator | Description |
|---|---|
GeoValidator |
Base geospatial validator |
LatitudeValidator |
Latitude range (-90 to 90) |
LongitudeValidator |
Longitude range (-180 to 180) |
CoordinateValidator |
Coordinate pair validation |
CoordinateNotNullIslandValidator |
Detects (0, 0) coordinates |
GeoDistanceValidator |
Distance between coordinate pairs |
GeoDistanceFromPointValidator |
Distance from reference point |
GeoBoundingBoxValidator |
Within bounding box |
GeoCountryValidator |
Within country boundaries |
Constants:
- EARTH_RADIUS_KM = 6371.0
- EARTH_RADIUS_MILES = 3958.8
Drift¶
Detects distribution changes between reference and current data.
Installation: pip install truthound[drift]
Submodules:
- base - Base drift validators
- statistical - KS test, chi-square, Wasserstein
- psi - Population Stability Index
- numeric - Mean, variance, quantile drift
- multi_feature - Multi-feature drift
Validators:
| Validator | Description |
|---|---|
DriftValidator |
Base drift validator |
ColumnDriftValidator |
Single-column drift base |
KSTestValidator |
Kolmogorov-Smirnov test |
ChiSquareDriftValidator |
Chi-square for categorical |
WassersteinDriftValidator |
Earth Mover's Distance |
PSIValidator |
Population Stability Index |
CSIValidator |
Characteristic Stability Index |
MeanDriftValidator |
Mean change detection |
VarianceDriftValidator |
Variance change detection |
QuantileDriftValidator |
Quantile change detection |
RangeDriftValidator |
Range change detection |
FeatureDriftValidator |
Multi-feature drift |
JSDivergenceValidator |
Jensen-Shannon divergence |
Mixins:
- NumericDriftMixin - Numeric drift utilities
- CategoricalDriftMixin - Categorical drift utilities
Anomaly¶
Detects outliers using statistical and ML methods.
Installation: pip install truthound[anomaly]
Submodules:
- base - Base anomaly validators
- statistical - IQR, MAD, Grubbs, Tukey
- multivariate - Mahalanobis, Elliptic, PCA
- ml_based - Isolation Forest, LOF, SVM, DBSCAN
Validators:
| Validator | Description |
|---|---|
AnomalyValidator |
Base anomaly validator |
ColumnAnomalyValidator |
Single-column anomaly base |
IQRAnomalyValidator |
Interquartile range method |
MADAnomalyValidator |
Median absolute deviation |
GrubbsTestValidator |
Grubbs' test for single outlier |
TukeyFencesValidator |
Inner/outer fences |
PercentileAnomalyValidator |
Percentile-based bounds |
MahalanobisValidator |
Multivariate Mahalanobis |
EllipticEnvelopeValidator |
Robust Gaussian fitting |
PCAAnomalyValidator |
PCA reconstruction error |
ZScoreMultivariateValidator |
Multi-column Z-score |
IsolationForestValidator |
Isolation Forest |
LOFValidator |
Local Outlier Factor |
OneClassSVMValidator |
One-Class SVM |
DBSCANAnomalyValidator |
DBSCAN clustering |
Mixins:
- StatisticalAnomalyMixin - Statistical method utilities
- MLAnomalyMixin - ML method utilities
Referential¶
Validates foreign key relationships and hierarchy integrity.
Submodules:
- base - Base referential validators
- foreign_key - Foreign key validation
- cascade - Cascade integrity
- orphan - Orphan record detection
- circular - Circular reference detection
Validators:
| Validator | Description |
|---|---|
ReferentialValidator |
Base referential validator |
MultiTableValidator |
Multi-table validation base |
ForeignKeyValidator |
Foreign key validation |
CompositeForeignKeyValidator |
Composite FK validation |
SelfReferentialFKValidator |
Self-referential FK |
CascadeIntegrityValidator |
Cascade action integrity |
CascadeDepthValidator |
Cascade depth limits |
OrphanRecordValidator |
Orphan record detection |
MultiTableOrphanValidator |
Multi-table orphan check |
DanglingReferenceValidator |
Dangling reference detection |
CircularReferenceValidator |
Circular reference detection |
HierarchyCircularValidator |
Hierarchy cycle detection |
HierarchyDepthValidator |
Hierarchy depth limits |
Data Classes:
- ForeignKeyRelation - FK relationship definition
- TableNode - Table graph node
- CascadeAction - Cascade action enum
- CascadeRule - Cascade rule definition
Timeseries¶
Validates time series data properties.
Submodules:
- base - Base time series validators
- gap - Gap and duplicate detection
- monotonic - Monotonicity validation
- seasonality - Seasonal pattern detection
- trend - Trend analysis
- completeness - Time series completeness
Validators:
| Validator | Description |
|---|---|
TimeSeriesValidator |
Base time series validator |
ValueTimeSeriesValidator |
Value-based time series |
TimeSeriesGapValidator |
Gap detection |
TimeSeriesIntervalValidator |
Interval regularity |
TimeSeriesDuplicateValidator |
Duplicate timestamp detection |
TimeSeriesMonotonicValidator |
Monotonicity validation |
TimeSeriesOrderValidator |
Timestamp ordering |
SeasonalityValidator |
Seasonal pattern validation |
SeasonalDecompositionValidator |
Decomposition validation |
TrendValidator |
Trend direction validation |
TrendBreakValidator |
Trend break detection |
TimeSeriesCompletenessValidator |
Series completeness |
TimeSeriesValueCompletenessValidator |
Value completeness |
TimeSeriesDateRangeValidator |
Date range validation |
Enums & Data Classes:
- TimeFrequency - Frequency types (DAILY, HOURLY, etc.)
- TimeSeriesStats - Time series statistics
- MonotonicityType - Monotonicity types
- SeasonalPeriod - Seasonal period definitions
- TrendDirection - Trend direction enum
Business_rule¶
Validates domain-specific business rules and checksums.
Submodules:
- base - Base business rule validator
- checksum - Luhn, ISBN, credit card
- financial - IBAN, VAT, SWIFT
Validators:
| Validator | Description |
|---|---|
BusinessRuleValidator |
Base business rule validator |
ChecksumValidator |
Generic checksum validation |
LuhnValidator |
Luhn algorithm (credit cards) |
ISBNValidator |
ISBN validation |
CreditCardValidator |
Credit card number validation |
IBANValidator |
International Bank Account Number |
VATValidator |
VAT number validation |
SWIFTValidator |
SWIFT/BIC code validation |
Profiling¶
Validates data profiling metrics and distributions.
Submodules:
- base - Base profiling validator
- cardinality - Cardinality metrics
- entropy - Entropy calculations
- frequency - Value frequency analysis
Validators:
| Validator | Description |
|---|---|
ProfilingValidator |
Base profiling validator |
CardinalityValidator |
Cardinality bounds |
UniquenessRatioValidator |
Uniqueness ratio validation |
EntropyValidator |
Shannon entropy bounds |
InformationGainValidator |
Information gain validation |
ValueFrequencyValidator |
Value frequency distribution |
DistributionShapeValidator |
Distribution shape validation |
Data Classes:
- ProfileMetrics - Profiling metrics container
Localization¶
Validates regional identifier formats.
Submodules:
- base - Base localization validator
- korean - Korean formats
- japanese - Japanese formats
- chinese - Chinese formats
Validators:
| Validator | Description |
|---|---|
LocalizationValidator |
Base localization validator |
KoreanBusinessNumberValidator |
Korean business number (사업자등록번호) |
KoreanRRNValidator |
Korean Resident Registration Number |
KoreanPhoneValidator |
Korean phone format |
KoreanBankAccountValidator |
Korean bank account |
JapanesePostalCodeValidator |
Japanese postal code |
JapaneseMyNumberValidator |
Japanese My Number |
ChineseIDValidator |
Chinese ID number |
ChineseUSCCValidator |
Chinese USCC (统一社会信用代码) |
ML_feature¶
Validates machine learning feature quality.
Submodules:
- base - Base ML feature validator
- null_impact - Null impact analysis
- scale - Feature scale validation
- correlation - Correlation analysis
- leakage - Target leakage detection
Validators:
| Validator | Description |
|---|---|
MLFeatureValidator |
Base ML feature validator |
FeatureNullImpactValidator |
Null value impact analysis |
FeatureScaleValidator |
Feature scale validation |
FeatureCorrelationMatrixValidator |
Correlation matrix validation |
TargetLeakageValidator |
Target leakage detection |
Enums & Data Classes:
- ScaleType - Scale types (STANDARD, MINMAX, etc.)
- FeatureStats - Feature statistics
- CorrelationResult - Correlation results
- LeakageResult - Leakage detection results
Privacy¶
Validates privacy compliance (GDPR, CCPA, LGPD, etc.).
Submodules:
- base - Base privacy validators
- gdpr - GDPR compliance
- ccpa - CCPA compliance
- global_patterns - Global privacy patterns
Validators:
| Validator | Description |
|---|---|
PrivacyValidator |
Base privacy validator |
DataRetentionValidator |
Data retention compliance |
ConsentValidator |
Consent validation |
GDPRComplianceValidator |
GDPR overall compliance |
GDPRSpecialCategoryValidator |
GDPR special category data |
GDPRDataMinimizationValidator |
Data minimization principle |
GDPRRightToErasureValidator |
Right to erasure validation |
CCPAComplianceValidator |
CCPA overall compliance |
CCPASensitiveInfoValidator |
CCPA sensitive info |
CCPADoNotSellValidator |
Do-not-sell compliance |
CCPAConsumerRightsValidator |
Consumer rights validation |
GlobalPrivacyValidator |
Global privacy patterns |
LGPDComplianceValidator |
Brazilian LGPD compliance |
PIPEDAComplianceValidator |
Canadian PIPEDA compliance |
APPIComplianceValidator |
Japanese APPI compliance |
Enums & Data Classes:
- PrivacyRegulation - Regulation types
- PIICategory - PII category types
- ConsentStatus - Consent status
- LegalBasis - Legal basis types
- PIIFieldDefinition - PII field definition
- PrivacyFinding - Privacy finding results
Timeout¶
Distributed timeout management for validation operations.
Key Components:
- DeadlineContext - Deadline propagation context
- TimeoutBudget - Time budget allocation
- CascadeTimeoutHandler - Cascading timeout management
- GracefulDegradation - Fallback on timeout
See Built-in Validators for detailed usage.
Streaming¶
Real-time streaming data validation.
Key Components:
- StreamingValidatorMixin - Base mixin for streaming
- Streaming-compatible completeness validators
- Streaming-compatible range validators
Memory¶
Memory-efficient validation for large datasets.
Key Components: - Memory-aware processing algorithms - Approximate algorithms (HyperLogLog, streaming ECDF) - SGD online learning for outlier detection
Next Steps¶
- Built-in Validators Reference - Detailed parameter reference
- Custom Validators - Build your own validators
- Security Features - ReDoS protection, SQL injection prevention
- i18n Support - Internationalized error messages
- Performance Optimization - DAG execution, profiling